
SV-AF – A Security Vulnerability Analysis
Framework

Sultan S. Alqahtani Ellis E. Eghan Juergen Rilling
Department of Computer Science and Software Engineering

 Concordia University
Montreal, Canada

{s_alqaht, e_eghan}@encs.concordia.ca, juergen.rilling@concordia.ca

Abstract - The globalization of the software industry has
introduced a widespread use of system components across
traditional system boundaries. Due to this global reuse, also
vulnerabilities and security concerns are no longer limited in
their scope to individual systems but instead can now affect
global software ecosystems. While known vulnerabilities and
security concerns are reported in specialized vulnerability
databases, these repositories often remain information silos. In
this research, we introduce a modeling approach, which
eliminates these silos by linking security knowledge with other
software artifacts to improve traceability and trust in software
products.

In our approach, we introduce a Security Vulnerabilities
Analysis Framework (SV-AF) to support evidence based
vulnerability detection. Two case studies are presented to
illustrate the applicability of our presented approach. In these
case studies, we link the NVD vulnerability databases and the
Maven build repository to trace vulnerabilities across repository
and project boundaries. In our analysis, we identify that 750
Maven project releases are directly affected by known security
vulnerabilities and by considering transitive dependencies, an
additional 415604 Maven projects can be identified as
potentially affected by these vulnerabilities.

Keywords—security vulnerabilities, software quality, software
build systems, software dependencies.

I. INTRODUCTION
The Internet has not only changed our society but also was

key to enabling the globalization of the software industry, with
knowledge and information sharing becoming a central part of
software development processes [1], [2]. As a result of this
globalization, traditional project boundaries have been replaced
with a free flow of information, resources and knowledge
across projects. For example, open source software is published
on the Internet through specialized code sharing portals e.g.,
Sourceforge1, GitHub2, to allow for components to be reused
and extended by project developers. At the same time, this
global reuse also introduces new challenges to the software
engineering community, since not only components but also
problems and vulnerabilities found in these reused components
are shared. The situation is further exacerbated by the fact that

1 www.sourceforge.net
2 www.github.com

existing analysis tools, developed for project level support
typically do not scale to these new global software and
development contexts. As a result, Information Security (IS)
has emerged as a major challenge for the software domain and
has become an integrated part of today’s software development
processes [2]. Specialized advisory databases (e.g. National
Vulnerability Database (NVD)3) have been introduced to
provide central repositories for tracking software vulnerabilities
and potential solutions to resolve them. However, while these
databases are knowledge rich resources, they have often
remained information silos, disconnected from other
knowledge in the software development domain, such as code
or issue tracker repositories.

There exist several reasons for these information silos: 1.)
A lack of standardized formalism for representing knowledge
in the software engineering domain.. 2.) The inability to
integrate seamlessly heterogeneous knowledge resources that
would allow for both, establishing semantic links across
existing knowledge and inferring new knowledge.. 3.) No
uniform resource identifiers across knowledge resources that
support fact and analysis results sharing for consumption by
either humans or machines.

Given the growing importance of IS for the software domain
and the challenges the software community faces in integrating
heterogeneous knowledge resources, this paper introduces a
modeling approach that addresses this traceability challenge.
More specifically, our approach takes advantage of the
Semantic Web and its supporting technologies (e.g., ontologies,
Linked Data, reasoning services) to establish a unified
representation that supports knowledge integration across
repository boundaries. In addition, using ontologies and Linked
Data we can now enrich these repositories with explicit and
implicit semantic links and take advantage of Semantic Web
reasoning services, to create true information hubs. We
introduce a Security Vulnerabilities Analysis Framework (SV-
AF), which not only establishes traceability links between
security databases and software repositories, but also enables
practitioners being notified about potential security
vulnerabilities introduced due to the indirect dependencies
within their systems.

The remainder of this paper is organized as follows: Section
II describes in more detail background relevant to our research.

3 www.nvd.nist.gov

2016 IEEE 27th International Symposium on Software Reliability Engineering

2332-6549/16 $31.00 © 2016 IEEE

DOI 10.1109/ISSRE.2016.12

219

Section III describes details of our proposed SV-AF. Section IV
explains the methodology used to instantiate the framework.
Section V discusses our case study design and findings. Section
VI provides a discussion of our findings and potential threats to
the validity. Section VII compares our work with related work,
followed by Section VIII, which concludes the paper and
discusses future work.

II. PRELIMINARIES

A. Software Build Systems
Build systems transform the source code of a software

system into deliverables by managing required project
dependencies and automating the build process. Build files are
either stored in source code repositories together with a
project’s source code (e.g. Ant build files) or in specialized
build repositories, such as the Maven central repository4. The
Maven repository is a large collection of Java artifacts to allow
organizations to publish and make their software components
available to developers. The Maven repository contains over 1
million artifacts (e.g., JAR files, source code, Javadoc), with
each artifact being uniquely identified by its groupId, artifactId
and version number. As part of the Maven build process, a
software project defines through xml configuration files (POM
files), unidirectional project dependencies on other artifacts.
Upon a project build, Maven dynamically downloads all
dependent Java libraries and plug-ins from the Maven central
repository into a local cache to be accessible during the project
build.

B. Security Vulnerability Databases
In the software security domain, a software vulnerability

refers to mistakes or facts about the security of software,
networks, computers or servers that can create security risks
and be used by hackers to gain access to system information or
capabilities [3]. The discovery of new software vulnerability is
often first reported in software repositories (e.g., issue trackers,
mailing lists) of the affected projects or discussed on Q&A sites
(e.g., StackOverflow5). A common characteristic of such early
vulnerability reporting is that descriptions (information) of
vulnerabilities are dispersed across multiple resources, but also
the descriptions tend to be incomplete, inconsistent and
ambiguous across resources. Advisory databases (e.g., NVD)
were introduced to address some of these shortcomings. Their
key objective is to provide a central resource for reporting
vulnerabilities, but also to standardize the reporting of
vulnerabilities. To facilitate this standardization process, a
Common Vulnerabilities and Exposures (CVE) dataset has
been introduced to create a publically available dictionary for
vulnerabilities to allow for a more consistent and concise use of
security terminology. Once a new vulnerability is revealed and
verified by security experts, this new vulnerability and other
relevant information (e.g., unique identifier, the source URL,
affected resources and related vulnerabilities from the same
family group) will be added to the CVE database.

4 http://search.maven.org
5 http://www.stackoverflow.com

In addition to the CVE entry, the vulnerability will also be
classified in the Common Weakness Enumeration (CWE)
database. The CWE provides a common language to describe
software security weaknesses and classifies them based on their
reported weaknesses. NVD, CVE, and CWE are all part of a
global effort to manage the reporting and classification of
software vulnerabilities.

C. The Semantic Web
The Semantic Web has been defined by Berners-Lee et al.

as “an extension of the Web, in which information is given well-
defined meaning, better enabling computers and people to work
in cooperation” [4]. It forms a Web from documents to data,
where data should be accessed using the general Web
architecture (e.g., URIs). Using this Semantic Web
infrastructure allows data to be linked, just as documents (or
portions of documents) are already, allowing data to be shared
and reused across application, enterprise, and community
boundaries. In a Semantic Web, data can be processed by
computers as well as by humans, including inferring new
relationships among pieces of data. For machines to understand
and reason about knowledge, this knowledge needs to be
represented in a well-defined, machine readable language.
Ontologies provide a formal and explicit way to specify
concepts and relationships in a domain of discourse. The
Semantic Web uses the Resource Description Framework
(RDF) as its data model to formalize the meta-data as subject-
predicate-object triples, which are stored in triple-stores. Triple-
stores are Database Management Systems (DBMS) for data
modeled using RDF. Unlike Relational Database Management
Systems (RDBMS), which store data in relations (or tables) and
are queried using SQL, triple-stores store RDF triples and are
queried using SPARQL [4]. The RDF data-model is domain
independent and users define ontologies using an ontology
definition language. The Web Ontology Language (OWL) [5]
is an example of such a definition language and has been
standardized by the W3C6. It supports the creation of machine
understandable information to enable Web resources to be
automatically processed and integrated. The sub-language,
OWL-DL, is based on Description Logics (DLs)[6]. DL is a
logic-based formalism using predicate calculus to define facts
that can formally describe a domain. Therefore, DLs are a set
of axioms called a TBox (e.g.������ � �	�
��) and set of
facts called ABox (e.g. {Parent(John), hasChild(John, Mary)}).
Both TBox and ABox form a knowledge Base (KB) and often
written�� ��� ��� �. The RDF data-model forms a graph
where nodes (subject, object) are connected through edges
(predicates). The SPARQL query language [7] is used to
retrieve information from RDF data-model graphs.

III. SECURITY VULNERABILITY ANALYSIS FRAMEWORK

A. Knowledge Modeling
One of the key premises of the Semantic Web is its ability

to share and extend existing knowledge. Our knowledge
modeling approach builds upon this premise, by reusing and

6 https://www.w3.org/

220

extending the software engineering ontologies introduced in
[8]. More specifically, we extend these ontologies, by focusing
not only the semantic integration of additional traditional
software repositories (e.g., build management) and specialized
repositories (e.g., vulnerability databases) but also an ontology
design that goes beyond the conceptualization of a domain of
discourse, by focusing on the inference of new knowledge. We
followed a bottom-up modeling approach, where we model first
system specific concepts and iteratively abstracted higher-level
shared concepts in upper-ontologies (see Fig. 1). The resulting
four layer modeling hierarchy is similar to a metadata modeling
approach introduced by the Object Management Group
(OMG)7. Each of these layers differ in terms of their purpose
and their design rationale. To improve the readability, we
denote OWL classes in italic, individuals are underlined and a
dashed underline is used for properties. For a complete
description of our ontologies, we refer the reader to [9].

Domain Spanning Concepts

General
Concepts

 Concepts Relations &
Attributes

Measurements

Sec. Vuln.
Traceability

APIs Sec.
Assessments

Sec. Patches
Depedencies

Change
Couplings

Domain Specific Concepts
Build

Systems
Software

Engineering
Security

Vulnerabilities

IvyAntMavenHistoryIssue
Tracking

Source
CodesOSVDBNVD

Exploits
DB

System Specific Concepts

Fig. 1: The SV-AF Ontologies Abstraction Hierarchies

General Concept Layer - Classes in the top-layer model

correspond to meta-meta level concepts - core concepts shared
and extended by the lower modeling layers. Examples for such
core concepts are: Product, Reference, Activity, Stakeholder, or
Artifact. All concepts in this layer are subclasses of the
SeonThing class (a subclass of owl:Thing, which captures the
set of all individuals within our framework). Similarly the
datatype properties and object properties in this layer are
generic and shared across the abstraction layers. For example,
the dependsOn object property captures the generic relationship
between things - one Product dependsOn another Artifact.

Domain-Spanning Concepts – In this layer, concepts
describe knowledge that is typically inferred from two or more
ontologies. For example the measurements ontology acts as a
general linking mechanism between ontologies. The ontology
provides two basic concepts, BaseMeasure or DerivedMeasure.
Adequate BaseMeasure instances are the size and
numberOfDependencies in a Product. DerivedMeasure

7 http://www.omg.org/

captures an aggregation of values from different subdomains.
For example, the DerivedMeasure class includes the
numberOfVulnerabilitiesPerApi instance, which is computed
from measures collected from the source code, history, build
system and the vulnerability ontologies. SimilarityMeasure,
which is a subclass of DerivedMeasure, captures the similarity
([0,1]) between any two SeonThing instances.

Domain-Specific Concepts - The third layer in our
knowledge model captures domain specific aspects; concepts
that are common and reused across resources in a particular
domain (e.g., domain of issue trackers). At the core of the
domain specific layer we have several domain ontologies: (1)
Software sEcurity Vulnerability ONTologies (SEVONT), (2)
Software Evolution ONtologies (SEON) [8] and (3) Software
Build Systems ONtologies (SBSON). For example, security
databases are capturing a Vulnerability that has an associated
Event. An event often can be further divided into Action and
Impact - an attacker exploits a Vulnerability to produce an
Action, which has an Impact.

System-Specific concepts - The bottom layer defines
systems-specific concepts by extending the domain specific
concepts to capture knowledge specific to a particular
knowledge resource. For example, the system specific ontology
for NVD extends the general SEVONT ontology with NVD
specific information on the severity of vulnerabilities by adding
a Severity concept.

B. Knowledge Engineering and Result Integration
The Semantic Web is characterized by decentralization,

heterogeneity, and lack of central control or authority. These
new features have greatly contributed to the success of the
Semantic Web but at the same time, also introduced several new
challenges.

Knowledge Base engineering: In contrast to the top-down
approach often used by knowledge engineers, we follow a data-
driven, bottom-up approach (Fig. 2).

Re-using existing
concept

Is it already
covered by an

ontology of the
upper layers?

Potentially new concept
encountered

Do other
system-specific

ontologies contain
similar

concepts?

Queue ontology/
concept for

consolidation

Define system-specific
ontology and include the

new concept (temporarily)
No

YesYes

Fig. 2: Knowledge engineering process to support result integration

When modeling a new knowledge resource or integrating

new analysis results, during the interception phase, we first
conceptualize the domain of discourse, by identifying its major
concepts and relations. Before adding a concept to the
knowledge base, we verify that a similar concept has not yet
previously modeled in any of the upper SV-AF’s layers, e.g.,

221

the domain-specific layer, and re-use the existing concepts
whenever possible. If no similar concept exist, we temporarily
add the concept to its system-specific ontology, before
considering consolidating it with other existing concepts. This
consolidation process usually is postponed until we reach a
sufficient understanding of the problem domain.

For example, given are two similar concepts found in
different security vulnerability databases, we will first create
two distinct system-specific concepts in both ontologies. Then
we compare the results and move if commonalities are
identified the two concepts to the domain-specific layer.
Concepts modeled in more than one domain are promoted from
the domain-specific to the domain-spanning layer.

Result integration: Our approach applies different types of
analysis and combines different knowledge resources, it is not
realistic to expect that all sources share a single, consistent view
at all times. In particular, if one considers result integration,
where different resources or analysis approaches might
generate results, which are in a possible disagreement. The
knowledge engineering community has proposed different
approaches to manage such possibly conflicting information
sources. For example in [10], an approach is presented that
models this disagreement by structuring knowledge into
viewpoints and topics. Using this approach Viewpoints
represent a particular point of view (e.g., information stemming
from a particular tool or knowledge resource), whereas topics
capture knowledge that is relevant to a given subject (e.g.,
vulnerable artifact). These environments are nested within each
other: viewpoints can contain either other viewpoints or topics.
Using this nested modeling approach, a topic can now contain
knowledge pertaining to its subject, but also other viewpoints,
e.g., when the subject is another user [10]. These viewpoints
create spaces within which to do reasoning: consistency can be
maintained within a topic or a viewpoint, but at the same time,
conflicting information about the same topic can be stored in
another viewpoint without having to decide on a “correct” set
of information, thereby losing information prematurely.

C. An Example Scenario: Modeling global vulnerability
impacts using bi-directional dependencies

Currently, there are a number of build systems which
provide users with support for managing both internal
components and external API dependencies.

D

EA

B

C

F

G

 Target project

 Dependency coverage
(Traditional build)

 Extra Dependency
coverage (SV-AF)

uni-directional
dependsOn link

Inferred Transitive
dependency link

LEGEND

Fig. 3: Unidirectional vs. bi-directional dependencies

However, while such a unidirectional dependency model

works well for managing build dependencies, it restricts a
user’s ability to further reason upon this knowledge. For

example, using Maven, it is currently not possible for a user to
identify all components or projects that depend either directly
or indirectly on a specific project (see Fig. 3).To overcome this
challenge, we take advantage of the Semantic Web and its
standardized knowledge modeling approach, by introducing
our SBSON ontology to capture the dependencies in the Maven
repository.

Using SBSON we are now able to create a global bi-
directional project dependency graph, which supports extra
semantic analysis by taking advantage of semantic reasoning
services. For example, in Fig. 3, using SBSON we can extend
the Maven supported impact analysis on project C, by not only
identify all components on which project C depends on
(projects D and E), but also all projects which might depend on
project C (projects A, F and G).

As discussed before, our SV-AF knowledge modeling
approach allow analysis approaches to take advantage of the bi-
directional dependencies in our knowledge model. In what
follows, we not only illustrate how the Maven repository can be
seamlessly integrated with NVD by modelling relevant
concepts and their relations across the different abstraction
layers in our knowledge modeling approach. We provide a
concrete usage scenario, how our unified representation can
support now for example impact analysis of known
vulnerabilities across heterogeneous software repositories
(NVD and Maven). The OWL classes and object properties
used for the impact analysis example are shown in Fig. 4 (data
properties have been omitted to improve readability of the
figure).

Vulnerability

Weakness

Countermeasures

classifiedAs

has

Score

Severity

has

calculatedBy

Measurement

Measure

with
Stakeholder

Artifact

File

Developer
Sec. Engineer

measures

high

medium

low

Organization

Product

Release

hasbelongsTo

BuildRelease
dependsOn

sameAs

measures

Sy
ste

m
-sp

ec
ifi

c

SEVONT – nvd.owl

D
om

ai
n-

sp
ec

ifi
c

Do
m

ai
n-

Sp
an

ni
ng

G
en

er
al

SEVONT- SecurityDBs.owl

SEVONT- vulnerabilities.owl

SBSON – build.owl

SEON- main.owl

OWL classes OWL individivuals object property subclass ofinstance of

….

….

….

…. ….

….

….
….

….

VulnerableRelease

affects

DependencyLink

optional
scope

type

SBSON – maven.owl

Group

BuildProject

belongsToGroup

BuildRepository

hosts

hasDependee

Repository

inferred
Relation

VulnerabilityAssessment

measures

� CVSS

excludes

hasDependant

hosts

VulnerableCode

SecurityPatch

identify

manifestIn

has

Fig. 4: SV-EF’s ontologies and concepts involved in software

vulnerability dependencies analysis

Modeling Vulnerable Release dependences: A

VulnerableRelease is a software Release within the NVD
database with a known Vulnerability. A BuildRelease is a
software release within the Maven ecosystem. Using our
ontology alignment process, we infer that a given

222

VulnerableRelease is sameAs a specific BuildRelease–. As
such, the VulnerableRelease inherits the properties of the
original BuildRelease, for example, the VulnerableRelease now
dependsOn other BuildRelease. Given the support for bi-
directional links in our model, a Project hosted in an
ecosystem’s Repository can now be identified as being
potentially affected by a vulnerability when it directly or
indirectly reuses a VulnerableRelease.

IV. METHODOLOGY

A. Overview
In what follows we introduce in more details our overall

methodology (Fig. 5) which consists of three major steps: (i)
Fact extraction and population, (ii) ontology alignment and (iii)
tracing vulnerabilities across knowledge boundaries using
knowledge inferencing/reasoning.

Build Systems
 Data Sources

Security Vulnerabilities
 Data sources

SPARQL End-PointSV-AF Knowledge Base

XML feeds

POM xml
 files

Domain Spanning Concepts

General
Concepts

 Concepts Relations &
Attributes

Measurements

Sec. Vuln.
Traceability

APIs Sec.
Assessments

Sec. Patches
Depedencies

Change
Couplings

Domain Specific Concepts
Build

Systems
Software

Engineering
Security

Vulnerabilities

IvyAntMavenHistoryIssue
Tracking

Source
CodesOSVDBNVD

Exploits
DB

System Specific Concepts

Ontologies Modeling And
Engineering Module

B A

UserUser

UserUser

Fig. 5: SV-AF system overview

B. Facts Extraction and Population
Our SV-AF framework depends on several endogenous and

exogenous data sources. Endogenous data sources are internal
to a software development environment such as source code,
issues trackers and build repositories. In contrast, exogenous
data sources are external to a software development
environment, such as vulnerability databases, Q&A sites.

The fact extraction process itself consists of extracting facts
from the Maven POM files and the NVD XML update feeds
(see Fig. 5 –B). For the ontology population, we use the Jena8
framework to populate the corresponding artifact ontologies
and materialize them using a triples-tore.

Literal
Information

Pre-matchDumps Extraction

Instance Pairs

Labeled
Similarity
Instances

Manual
labeling

Existing
Marches

Training Data
PSL Classifier Learning

 Model

Testing

New
 Matches Output

Fig. 6: Instances matching approach

C. Ontology Instances Aligment
For the alignment of instance in our ontologies, we take

advantage of the Probabilistic Soft Logic (PSL) framework

8 jena.apache.org

9 http://franz.com/agraph/support/learning/Overview-of-RDFS++.lhtml

[11], which establishes weighted links between ontologies (Fig.
6).

PSL uses continuous variables to represent truth values,
relaxing the standard Boolean values [11] traditionally used.
The resulting probability distribution over literals is captured in
a graph model, which can then be reasoned upon. The majority
of the rules in PSL are soft-weighted rules, like rules stating that
instances are similar if their names or their classes are similar
(see Listing 1).

�� ������� ������ �! " �����#� ������ �! " ��$����%!

" ��$��#� &! " ��$�'�()*�%� &!

" �� �+,(�� - #� �+,(�

. ��$�'�(���#!�/01234 5� 6

7� �89	�:� ;�
�<��	! " �89	�=� ;�
�<��	! " �<>	�:� ?!

" �<>	�=� @! "
;>;A<�B��?� @!

" :�
�C��	� - =�
�C��	�

" D	�
;���:� E! " D	�
;���=� F!

"
;>;A<�B��E� F!

.
;>;A<��:� =!�GHIJK4 L�M

Listing 1: PSL rules

For example, in Listing 1.1 the first PSL rule states that two
instances A, B with similar names defined in different source
ontologies are likely to be similar. “similarID” is a similarity
function implemented using the Levenshtein similarity metric.
Rules in PSL are labeled with non-negative weights. In Listing
1.2, the rule weights is used to indicate that projects with same
names and versions are more likely to be similar than projects
with same names only (Listing 1.1).

Using PSL we can establish owl:sameAs relations between

similar instances found in the SEVONT and SBSON
ontologies. In this example, two ontologies NVD and Maven are
given as data sources and their corresponding instances NOP�N
and�NQ<D	�N. The number of possible instance pairs for these
two ontologies is NOP�N R NQ<D	�N. In our example, similarity
among instance pairs is determined based on the extracted
literal information such as name, version and vendor. We used
the PSL framework classifier to compute the similarity weights
for the owl:sameAs links. For training purpose, we created a
training dataset with manually labeled instance links to train the
PSL classifier to establish the weights for the pre-defined rules.
Having derived the semantic similarity weights for each
instance pair, we can now assigned these weights to the
owl:sameAs (see Fig. 7) links between the aligned instances
and then materialized the alignment results to our knowledge
base. Having the weighted alignment links between the two
ontologies, a SPARQL query can now be written, to retrieve the
vulnerability information from the NVD ontology and their
corresponding instances in Maven ontology based on a given
similarity threshold. For this query, we take advantage of
RDFS++9 reasoning to not only retrieve explicit but also infer
implicit facts from the knowledge base. More specifically, our
ontology design not only supports transitive but also

223

subsumption reasoning, which are not supported by traditional
relational databases.

measure:SimilarityMeasure

weight

sbson:instance sevont:instance
owl:sameAs sevont:vuln.owl

#VulnerableRelease
sbson:build.owl
#BuildRelease

rdf:typerdf:type

measure:measureThing measure:measureThing

measure:hasMeasureValue

instance class

Defined RelationInferred Relation

Literal

Fig. 7: weighted similarity modeling

D. Knowledge Inferencing and Reasoning
A key feature of many triples-stores is to provide scalability

reasoning, by materializing reasoning results. In this section, we
discuss how such reasoning capabilities are used in our
approach to trace vulnerabilities across knowledge boundaries.

owl:sameAs inference: A commonly used predicate for
inferring new knowledge is owl:sameAs, which is used to align
two concepts. An example from our SBSON and SEVONT
ontologies is shown in Fig. 8.

	D���4 ���S:����������������TU4 �89	����������������������� ������
	D���4 PCA�	�<VA	W	A	<
	

V
��4 ���S=������������������TU4 �89	����������������������� ������
V
��4 =C;ATW	A	<
	

	D���4 ���S:���������������
	D���4 X<
PCA�	�<V;A;�8���
	D���4 YPZ [B�

	D���4 ���S:���������������\/]4 ^_`ab^��������������� ������
V
��4 ���S=�

Fig. 8: owl:sameAs rules example

Given is the following SPARQL query (Listing 2), which takes
advantage of the owl:sameAs predicate if inference is enabled:

Listing 2: SPARQL query returning same as projects vulnerabilities

Without inferencing, the query result set would be empty, since
no triple has as subject sbson:ProjB and predicate
sevont:hasVulnerability. However, with inference enabled, it
can now be infer that ProjB has a vulnerability (CVE-ID10)
through the reasoner being able to establish a link between
sbson:ProjB and sevont:ProjA using the owl:sameAs property.

owl:TransitiveProperty inference: A relation R is said to
be transitive if R(a,b) and R(b,c) implies R(a,c); this can be
expressed in OWL through the owl:TransitiveProperty
construct. We define seon:dependsOn to be a bi-directional
transitive property of type owl:TransitiveProperty (e.g., �
seon:dependsOn rdf:type owl:TransitiveProperty). Through
this transitive construct, we are now able to retrieve a list of all
projects that have a direct and transitive dependency on the
vulnerable library, and vice versa (see Listing 3).

10 Every CVE-ID is uniquely identified by the letters ’CVE’, and eight digits.
For example, CVE-2015-0235.
11 https://ws.apache.org/wss4j/
12 https://hc.apache.org/httpcomponents-client-ga/

Listing 3: SPARQL query returning transitive vulnerable dependencies

V. CASE STUDY
This section introduces the two case studies we use to

evaluate the applicability of our knowledge modeling approach.
More specifically, in case study #1, we identify semantically
similar software projects that exist in Maven and contain known
security vulnerabilities disclosed in the NVD database. The
objective of this case study is to evaluate the applicability of our
alignment process by comparing it against a specialized,
existing dependency analysis tool [12]. For the second case
study, we illustrate how semantic reasoning can enable
semantic richer analysis services. More specifically, we show
that our semantic rules can infer explicit and implicit security
vulnerabilities by inferring transitive dependencies by
traversing the bi-directional links.

A. Case Study Data
For the data collection and extraction in our case studies, we

rely on two data sources: the NVD database and the Maven
build repository. We download the latest version of the
repository from the Maven.org website (Table I) and download
all NVD vulnerability xml feeds from 1990 and 2016 (Table II).
For case study #1, the number of releases and unique vulnerable
products were used to evaluate our alignment approach, for
integrating these two ontologies.

Table I: Maven Repository statistics

Repository Projects Releases Last Update
Maven [13] 130,895 1,219,731 2016-01-28 16:34:07 UTC

Table II: NVD database statistics

Repository # unique
vulnerabilities

unique vulnerable
products Period

NVD [14] 74945 109212 1990 - 2016

For our case study #2, the objective was to identify the

potential transitive impact set of some vulnerable components
on other systems. For the study, we selected five Apache
projects (Table III) hosted in the Maven repository. The main
criteria for selecting these projects was that at least some of
their releases contain known vulnerabilities (identified in our
case study#1) and the functionalities these products provide are
widely reused by other projects. These five subjects vary in size
(classes and methods) and application domain. Wss4J11 is a Java
implementation of the primary security standards for Web
Services, Httpclient12 is responsible of provides reusable
components for client-side authentication, HTTP state
management, and HTTP connection management. Apache
Derby13 is an open source relational database implemented

13 https://db.apache.org/derby/

224

entirely in Java, Hibernate Validator14 allows expressing and
validating application constraints using annotation-based
constraints, and Apache OpenJPA15 is a Java persistence
project that can be used as a stand-alone plain old Java object
(POJO) persistence layer or be integrated into any Java EE
compliant container.

Table III: Subject systems and sizes for transitive dependencies analysis

B. Case Study Results
Case Study 1: Identifying open source components that are

directly susceptible to known security vulnerabilities

Objective: The goal of this study is to evaluate the

performance of our semantic similarity linking approach used
to align two domain specific ontologies.

Approach: In order to align (link) these two ontologies
(SEVONT and SBSON), we use the PSL framework to align
project specific information found in both ontologies. We
trained PSL using a corpus of 524 randomly selected project
instance pairs for which manually created links. We then
executed our PSL alignment rules on this training dataset to
train our approach. As a result from this training, two concept
instances in these ontologies can now be aligned with a degree
of certainty, if A and B, with same names are defined in
different ontologies (cd<>	d�C��) and have similar Vendors
and same Version numbers. SameName, SimilarVendor, and
SameVersion are a similarity functions implemented using a
Levenshtein distance metric. In this example, the
SameProject(A,B)�is given a weight of 0.9 (Listing 4), which is
based on result from the PSL training set. Fig. 9 shows the PSL
inference results for our training dataset, with the weights for
the d<>	���S	���:� =!�alignment ranging from a minimum of
0.04 to a maximum of 0.42.

Using the semantic rule (Listing 4), PSL can now perform
maximum a posteriori (MPE) reasoning [11] to infer the most
likely values for a set of propositions and observed values for
the remaining (evidence) propositions.

e+,(���� e��! " e+,(��#� e�#!

" ce�$�e+,(��e��� e�#!

" f�$���� %�! " f�$��#� &�!

" e�$�f�$��%�� &�!

" g��h+(��� %i! " g��h+(�#� &i!

" e�$�'�(g��h+(�%i� &i!

" g�(��+���� %j! " g�(��+��#� &j!

" e�$�g�(��+��%j� &j!

. e�$�k(+l� ���� #!�/a01234 5� m

Listing 4: SameProject Rules
For a full discussion on MPE reasoning, we refer the reader

to [11]. The results of the PSL inference is a set of : R =

14 http://hibernate.org/validator/
15 http://openjpa.apache.org/

SameProject weights that range from [0..1], with 0 two concept
instances having no similarity and 1 corresponding to 100%
similarity among instances.

Fig. 9: Probabiltisitc PSL similarities results

As part of our knowledge modeling approach, we

materialized the inferred semantic instance links (owl:sameAs)
between the SEVONT and SBSON ontology, making this
inferred knowledge a persistent part of our knowledge model.
We add weights for each link, based on the inferred similarity
values using the domain spanning similarity measure
(SimilarityMeasure) class in our model (Section III-A).

Findings. Our study showed that 0.062% of all Maven
projects contain known security vulnerabilities that have been
reported in the NVD database. An example for such a
vulnerability is shown in Table IV.

Table IV: Example of linked vulnerability

SEVONT fact SBSON fact Corresponding
Vulnerability

Sevont-
securityDB.owl#sonatyp

e:nexus:2.3.1

Sbson-
build.owl#org.sonatype.n

exus:nexus:2.3.1

Sevont-
securityDB.owl#CVE-

2014-0792

Further analysis of our results showed that projects might
often suffer from multiple vulnerabilities. We found also that
48.8% of the 750 identified vulnerable project releases suffer
from multiple security vulnerabilities, with PostgreSQL 7.4.1
being the most vulnerable project in the repository, containing
25 known vulnerabilities. Giving this additional insight can
guide system update decisions and help avoiding the reuse of
APIs/components with known security vulnerabilities or
components that might be prone to these type of vulnerabilities.

For example, in December 2010, Google released its Nexus
S smartphone16. The phone was originally running on Android
2.3.3 – an Android version that already contained the security
vulnerability discussed in Table V. While the Nexus S received
regular Android OS updates up to Android Version 4.2, an
actual fix of the reported vulnerability (CVE-2013-4787) was
only introduced with Android 4.2.2. However, this new
Android version is not supported and distributed for the Nexus
S, leaving existing users of the phone susceptible to attacks. Our
analysis also showed that the same vulnerability can affect
multiple releases of a product. For example, security
vulnerability CVE-2013-478717 has been reported for five

16 https://en.wikipedia.org/wiki/Nexus_S
17 https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4787

ID Subject Systems Version Size
Classes Methods

P1 Wss4j 1.6.16 167 1610
P2 Httpclient 4.1 209 1180
P3 Derby 10.1.1.0 967 16354
P4 Hibernate-validator 4.1.0.Final 325 2642
P5 Openjpa 1.1.0 1201 18640

225

different Android versions (Table V). For product maintainers
this information can help in to ensure consistent patching and
regression testing across product lines or different versions of a
product.

Table V: Critical Vulnerabilities for Android Project

Evaluation: We evaluate the linking accuracy when

aligning project instances (owl:sameAs) between our Maven
and NVD ontologies.

During the first step of our evaluation, we compared the
impact of the similarity weight thresholds (G � L�n� G � L�7�

G � L�o��and�G � L�p) in terms of precision, recall and F1
measure on the inferred links created by the PSL alignment
process. Precision is calculated, with true positives being the
number of project instance pairs correctly classified as similar,
while false positives corresponds to the number of non-similar
instance pairs that are incorrectly classified as same projects.
For Recall, false negatives corresponds to the number of non-
similar instance pairs that are incorrectly classified as being
similar projects. The F1-score is the harmonic mean of
precision and recall, giving equal weight to both measures.

Our analysis (Table VI) showed that an increase in the
similarity threshold from 0.1 (low similarity) to 0.4 ((higher
similarity) had limited effect on the precision (decrease from
0.98 to 0.75), recall was significantly lower (down from 0.68 to
0.01).

Table VI: owl:sameAs link (w) evaluation
 Precision

Data Size w=0.0 w=0.1 w=0.2 w=0.3 w=0.4

500

0.77 0.88 0.98 0.93 0.75
Recall

0.77 0.68 0.30 0.03 0.01
F1-score

0.77 0.77 0.46 0.05 0.01
A manual inspection of the inferred links showed that the

low recall for the higher threshold values is due to the
inconsistent capturing of vendor information within the two
ontologies. NVD relies on the common name to identify a
vendor, whereas Maven uses the fully qualified package name
as the vendor name. For example, using a w=0.0,
org.apache.cxf:cxf:3.0.1,org.apache.geronim.configs:cxf:3.0.1
and org.apache.geronimo.plugins:cxf:3.0.1 in SBSON will be
considered the same instance as apache:cxf:3.0.1 in SEVONT
and therefore correctly linked. However, using a higher
similarity threshold, these instances will no longer be linked.
We use the similarity weight of�G � L�n in all subsequent
experiments due to its high F1-score.

We further evaluated the link quality by comparing our

approach against the OWASP Dependency-Check tool [12], a

specialized tool, which identifies direct dependencies between
projects and publicly disclosed vulnerabilities. For the study,
we apply the OWASP dependency check tool on our gold
standard (see Section IV.B) and compare the detected
dependencies against the links generated by our approach
(Table VII). The low OWASP recall is because OWASP
requires JAR files to be available to be able to map the files to
the vulnerabilities. However, not all projects hosted in Maven
are distributed with their JAR files.

Table VII: SV-AF vs. OWASP Dependency Check tool accuracy evaluation

Data Size SV-AF w=0.1 OWASP
Precision Recall F1-score Precision Recall F1-score

500 0.88 0.68 0.77 0.81 0.26 0.40

Case Study 2: Identifying open source components that are
directly and indirectly dependent on vulnerable components.

Objective: In this study we evaluate how our framework can
support the analysis of potential security vulnerability impacts
on dependent software components. Furthermore, the case
study illustrates the flexibility of our knowledge modeling
approach and highlight how additional knowledge resources
can be seamlessly integrated and reasoned upon.

Approach: For this case study, we extend our analysis to
include transitive closure dependencies (Fig. 10) that not only
identifies components that are directly but also indirectly
affected by known vulnerabilities. For this impact analysis, we
selected 5 open source Java projects (Table III) with known
security vulnerabilities for which we do not distinguish if a
component actually makes use (calls) a vulnerable component
or not.

Project #1 Project #2 Project #3 Project #ndependsOn dependsOn

Level #1 Level #2

dependsOn

Level #n

Inferred relation Declared relation

dependsOn

Fig. 10: Inferred project dependencies in SBSON

Findings: In what follows, we summarize the findings from
our case study. We report on our transitive dependency
analysis, which highlights also the benefits of our knowledge
modeling approach, the ability to integrate knowledge
resources while taking advantage of inference services provided
by the Semantic Web. Given the bi-directional links we
established between the NVD and the Maven repository, our
analysis is no longer limited to identify whether a project
depends on a vulnerable component. Instead, given a vulnerable
component, we can now also provide a more holistic analysis,
by identifying for a global context, which other projects
potentially directly or indirectly depend on this vulnerable
component.

Table VIII provides a summary of our analysis. In order to
keep the results simple and readable, we consider only three
levels of transitivity. For example, the vulnerable project
Hibernate-validator 4.1.0 (P4) has a potential impact set of
3805 direct dependent projects (level 1) and 128109 dependent
projects when we consider an additional two levels of
transitivity (level 3).

Android Version CVE-IDs # of direct
dependencies

SBSON#com.google.android
:android:2.2.1

CVE-2013-
4787 360

SBONS#com.google.android
:android:2.3.1

CVE-2013-
4787 176

SBSON#com.google.android
:android:2.3.3

CVE-2013-
4787 351

SBSON#com.google.android
:android:3.0

CVE-2013-
4787 34

SBSON#com.google.android
:android:4.2

CVE-2013-
4787 1

226

Table VIII: Transitive dependencies on vulnerable components

ID Component
Name

Vulner-
abilities

CVE-IDs

Number of dependent
components based on
transitivity level (L)

L1 L2 L3

P1 Wss4j
1.6.16 2 CVE-2015-0227

CVE-2014-3623 336 639 73

P2 Httpclient 4.1 2 CVE-2011-1498
CVE-2014-3577 685 4961 41326

P3 Derby
10.1.1.0 3

CVE-2005-4849
 CVE-2006-7216
CVE-2006-7217

385 37999 66147

P4
Hibernate-
validator

4.1.0.Final
1 CVE-2014-3558 3805 39295 128109

P5 Openjpa 1.1.0 1 CVE-2013-1768 74 49460 141303

Fig. 11 illustrates a typical usage scenario for modeling

approach. While the Geronimo-jetty6-javaee5 (version 2.1.1)
itself has no known vulnerability reported, the project depends
on several components (level 1 dependencies) with known
security issues (5 Java projects with a total of 15 known security
vulnerabilities), making also Geronimo-jetty6-javaee5
potentially a very vulnerable component.

Dojo
(version 1.0.2)

CVE-2010-
2276

affects

uses

CVE-2010-
2274

CVE-2010-
2275

CVE-2010-
2273

affectsaffects

affects

Openjpa
(versions 1.0.2 &

2.1.1)

CVE-2013-
1768affects

uses

Myfaces
(version 2.1.1)

CVE-2011-
4367

affectsuses

Cxf
(version 2.1.1)

CVE-2011-
4367affectsuses

Jetty
 (version 6.1.7)

CVE-2009-
4612

CVE-2009-
1524

CVE-2009-
1523

CVE-2009-
4461

CVE-2009-
4610

CVE-2009-
4609

CVE-2009-
4611

affects

affects

affects

affects

affects

affects

affects

uses

Geronimo-jetty6-javaee5
(version 2.1.1)

Medium SeverityHigh Severity External APIs

Fig.11: Geronimo-jetty6-javaee5 uses 5 projects (external APIs) from level 1

dependency and each project suffer from security vulnerabilities

VI. DISCUSSION AND THREATS TO VALIDITY
As our experiments illustrate, a unified and formal

knowledge modeling approach can indeed help eliminating
existing information silos, by seamlessly linking and
integrating knowledge resources. For the linking, we take
advantage of a probabilistic semantic similarity measure to link
instances in our ontologies (e.g., projects in SEVONT and
SBSON). Moreover, unlike traditional mining software
repositories techniques, our approach allows for analysis results
and inferred knowledge to become part of the knowledge base
and allow for their later consumption (processing) by either
human or machines. In addition, rather than relying on
proprietary analysis solutions, our modeling approach takes
advantage of the Semantic Web technology stack, including
standardized knowledge representation and inference services.

A. Case Study 1
Identifying known security vulnerabilities in software

projects has been widely discussed in the literature [3], [15]–
[17]. However, our approach differs from these existing works

in that 1.) It unifies two heterogeneous knowledge resources
(software security repositories and build system repositories),
using a standardized knowledge representation. 2.) It supports
semantic relationships (e.g., owl:sameAs) and RDFS++
reasoning to infer new knowledge (e.g., identify vulnerable
transitive dependencies), which are not explicitly found in any
of these resources. 3.) Given the bi-directional links, our
analysis can go beyond traditional inter project dependencies
and include intra project dependencies. The result from our case
study shows that the problem of depending on vulnerable third
party components with known security vulnerabilities is a
common and widespread problem [16].

B. Case Study 2
The case study illustrates that vulnerabilities can no longer

be treated in a project specific context. With the globalization
of the software industry, promoting sharing and integrating of
knowledge across knowledge borders, vulnerabilities might
have a wide spread impact on the software ecosystem. In our
second experiment, the use of transitive properties and
reasoning capabilities allow to transform a typical proprietary
analysis implementation into a simple, customizable
(SPARQL) query approach, which offloads much of the
processing to the semantic reasoners. For example, the query in
Listing 3, will not only return all projects that are directly but
also indirectly depending on a vulnerable component.

C. Threats to validity
Internal Validity: An internal validity threat to our

approach is that our experiments rely on the ability to mine facts
from the Maven and NVD repositories to populate our
ontologies. A common problem with mining software
repository is that repositories often contain noise in their data
due to ambiguity, inconsistency or incompleteness. This threat
can be mitigated in our research context, since vulnerabilities
published in NVD are manually validated and managed by
security experts and therefore making this data less prone to
noise. Similarly, the Maven repository captures dependencies
related to a particular build file, while ensuring that the
dependencies are fully specified and available, eliminating not
only ambiguities and inconsistency at the project build but also
for the complete dataset. Another internal validity threat is that
the instance pair matches for our training set was manually
created and potential be prone to human errors. In order to
mitigate this, we conducted a cross validation of the annotation,
where the links were evaluated by another person. Finally, the
size of the dataset used to evaluate our approach might not be
considered large enough. To mitigate this threat, we evaluated
our approach on dataset sizes to study the effect of the dataset
size on our results. Table IX shows a standard deviation of 0.04
and 0.09 for the precision and recall respectively. With the
exception of the smallest evaluation size (50 instance pairs), our
precision and recall for the various evaluation sizes are very
close to the mean, indicating that increasing the dataset size,
will most likely have no aversive effect on our results.

227

Table IX: Dataset size evaluation
Data

Points
SV-AF (w=0.1)

Precision |Distance from �| Recall |Distance from �|
50 0.76 0.11 0.38 0.26
100 0.87 0.00 0.62 0.02
150 0.88 0.01 0.69 0.05
200 0.9 0.03 0.69 0.05
250 0.89 0.02 0.68 0.04
300 0.86 0.01 0.63 0.01
350 0.87 0.00 0.66 0.02
400 0.87 0.00 0.68 0.04
450 0.88 0.01 0.67 0.03
500 0.88 0.01 0.68 0.04

Avg: 0.87 - 0.64 -
SD (�) 0.04 - 0.09 -

External Validity: In terms of external threats to validity,

the presented experiments might not be generalizable for non-
MAVEN projects. This threat can be partially mitigated through
our modeling approach. Given that our modeling approach is
based on different levels of abstraction, we also consider and
abstract common aspects of the domain of build repositories in
our knowledge model. We do model the domain of build
repositories as a domain of discourse in the domain-specific
layer of our knowledge model. Another external threat to
validity for our research is that our evaluation has mainly
focused on a quantitative analysis of the results from the case
studies, limiting our ability to generalize the applicability and
validity of the approach. In order to mitigate this threat, an
additional qualitative analysis has to be performed in the form
of user studies, which will allow for an evaluation of both, the
applicability of the approach and the analysis of the result sets
from an expert user perspective.

VII. RELATED WORK
Software Interrelationship Artifacts across

Heterogeneous Ecosystems: In a recent study, Ilo et al. [18]
present their Software Relationship Ontology (SWREL) to
model information about software interrelationships across
different ecosystems. However, their ontology design focuses
on the conceptualization rather than the inference of new
knowledge. In addition, the semantic linking in SWREL is
based on the dependencies relations existing in the Maven
repository and Debian18 package repository. In contrast, our
approach has more abstracted and generalizable features which
can capture knowledge of different build-systems and package
management repositories.

Tracking Security Vulnerabilities: A number of static

analysis tools exist (e.g.,[19]) that identify vulnerabilities in the
source code. However, their objectives differs from ours, since
their focus is on identifying and tracking security vulnerabilities
only for a given project. This is in contrast to our approach,
which also allows for a global dependency analysis of
vulnerabilities using different sources of information.
Mitropoulos et al. [20] and Saini et al. [21] used in their
approach a static analysis tool (e.g., FindBugs [22]), to locate
major security defects in Java source codes. They used the

18 https://www.debian.org/distrib/packages

collected information to then further study the evolution of
security-related bugs in a given project [23].

Mircea et al. [15] introduce their Vulnerability Alert Service
(VAS) tool to notify users if a vulnerability is reported for a
software systems. VAS depends on the OWASP Dependency-
Check tool, which we compare with our SV-AF approach in
Section V. VAS reports the vulnerable projects identified by the
OWASP tool without further investigation; and just like
OWASP, VAS does not support transitive dependencies
analysis of vulnerable components.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we introduce a Security Vulnerabilities
Evaluation Framework (SV-EF), which introduces a unified
ontological representation to establish bi-directional
traceability links between security vulnerabilities databases and
traditional software repositories. This framework not only
eliminates some of the traditional information silos in which
data resources have been resided, but also enables different
types of dependency analysis. More specifically, our
framework currently supports the linking of vulnerabilities
reported by NVD to projects captured by the Maven build
repository. Given the expressiveness of our ontological
knowledge representation, we can now take advantage of
semantic inference services to determine both direct and
transitive dependencies between reported vulnerabilities and
potentially affected Maven projects. Through two experiments,
we showed the applicability of our framework, highlighting the
potential impact of reusing vulnerable components in a global
software ecosystem context.

As part of our future work, we plan to investigate potential
vulnerability patterns based on the usage of vulnerable
components. These patterns will provide us with additional
insights in assessing and predicting the quality of software
systems.

REFERENCE
[1] P. Vermesan, Ovidiu and Friess, Internet of things:

converging technologies for smart environments and
integrated ecosystems. River Publishers, 2013.

[2] P. T. Devanbu and S. Stubblebine, “Software engineering for
security,” in ICSE ’00 Proceedings of the Conference on The
Future of Software Engineering, 2000, pp. 227–239.

[3] A. Williams, Jeff and Dabirsiaghi, “The unfortunate reality of
insecure libraries,” Asp. Secur. Inc, no. March, pp. 1–26,
2012.

[4] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic
Web,” Sci. Am., vol. 284, no. 5, pp. 34–43, May 2001.

[5] F. and others McGuinness, Deborah L and Van Harmelen,
“OWL web ontology language overview,” W3C Recomm.,
vol. 10, p. 10, 2004.

[6] C. J. H. Mann, “The Description Logic Handbook – Theory,
Implementation and Applications,” Kybernetes, vol. 32, no.
9/10, Dec. 2003.

[7] B. DuCharme, Learning SPARQL, 2n Edition. O’Reilly
Media, 2011.

[8] M. Würsch, G. Ghezzi, M. Hert, G. Reif, and H. C. Gall,

228

“SEON: a pyramid of ontologies for software evolution and
its applications,” Computing, vol. 94, no. 11, pp. 857–885,
Nov. 2012.

[9] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “SE-GPS,” 2015.
[Online]. Available: http://aseg.cs.concordia.ca/segps.
[Accessed: 26-Sep-2015].

[10] Y. Ballim, Afzal and Wilks, Artificial believers: The
ascription of belief. Psychology Press, 1991.

[11] A. Kimmig, S. Bach, M. Broecheler, B. Huang, and L.
Getoor, “A short introduction to Probabilistic Soft Logic.,” in
Proceedings of NIPS Workshop on Probabilistic
Programming: Foundations and Applications (NIPS
Workshop-12), 2012.

[12] S. S. Jeremy Long, “OWASP Dependency Check,” 2015.
[Online]. Available:
https://www.owasp.org/index.php/OWASP_Dependency_C
heck. [Accessed: 10-Mar-2015].

[13] A. M. Project, “Maven Central Repository.” [Online].
Available: http://search.maven.org/. [Accessed: 15-Dec-
2014].

[14] NIST, “National Vulnerability Database,” 2007. [Online].
Available: http://web.nvd.nist.gov/view/vuln/search.
[Accessed: 15-Dec-2014].

[15] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen,
“Tracking known security vulnerabilities in proprietary
software systems,” in IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering
(SANER), 2015, pp. 516–519.

[16] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “Tracing known
security vulnerabilities in software repositories – A Semantic
Web enabled modeling approach,” Sci. Comput. Program.,
vol. 121, pp. 153–175, Jun. 2016.

[17] V. Livshits and M. Lam, “Finding security vulnerabilities in
Java applications with static analysis,” … 14th Conf. USENIX
Secur. …, pp. 1–17, 2005.

[18] N. Ilo, J. Grabner, T. Artner, M. Bernhart, and T. Grechenig,
“Combining software interrelationship data across
heterogeneous software repositories,” in 2015 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), 2015, pp. 571–575.

[19] N. Rutar, C. B. Almazan, and J. S. Foster, “A Comparison of
Bug Finding Tools for Java,” in 15th International
Symposium on Software Reliability Engineering, 2004, pp.
245–256.

[20] D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios, and
D. Spinellis, “The bug catalog of the maven ecosystem,” in
Proceedings of the 11th Working Conference on Mining
Software Repositories, 2014, pp. 372–375.

[21] V. Saini, H. Sajnani, J. Ossher, and C. V. Lopes, “A dataset
for maven artifacts and bug patterns found in them,” in
Proceedings of the 11th Working Conference on Mining
Software Repositories, 2014, pp. 416–419.

[22] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM
SIGPLAN Not., vol. 39, no. 12, p. 92, Dec. 2004.

[23] D. Mitropoulos, G. Gousios, and D. Spinellis, “Measuring the
Occurrence of Security-Related Bugs through Software
Evolution,” in 16th Panhellenic Conference on Informatics,
2012, pp. 117–122.

229

