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Abstract - The globalization of the software industry has 
introduced a widespread use of system components across 
traditional system boundaries. Due to this global reuse, also 
vulnerabilities and security concerns are no longer limited in 
their scope to individual systems but instead can now affect 
global software ecosystems. While known vulnerabilities and 
security concerns are reported in specialized vulnerability 
databases, these repositories often remain information silos. In 
this research, we introduce a modeling approach, which 
eliminates these silos by linking security knowledge with other 
software artifacts to improve traceability and trust in software 
products.  

In our approach, we introduce a Security Vulnerabilities 
Analysis Framework (SV-AF) to support evidence based 
vulnerability detection. Two case studies are presented to 
illustrate the applicability of our presented approach. In these 
case studies, we link the NVD vulnerability databases and the 
Maven build repository to trace vulnerabilities across repository 
and project boundaries. In our analysis, we identify that 750 
Maven project releases are directly affected by known security 
vulnerabilities and by considering transitive dependencies, an 
additional 415604 Maven projects can be identified as 
potentially affected by these vulnerabilities.  
 
Keywords—security vulnerabilities, software quality, software 
build systems, software dependencies.  

I. INTRODUCTION 
The Internet has not only changed our society but also was 

key to enabling the globalization of the software industry, with 
knowledge and information sharing becoming a central part of 
software development processes [1], [2]. As a result of this 
globalization, traditional project boundaries have been replaced 
with a free flow of information, resources and knowledge 
across projects. For example, open source software is published 
on the Internet through specialized code sharing portals e.g., 
Sourceforge1, GitHub2, to allow for components to be reused 
and extended by project developers. At the same time, this 
global reuse also introduces new challenges to the software 
engineering community, since not only components but also 
problems and vulnerabilities found in these reused components 
are shared. The situation is further exacerbated by the fact that 

                                                           
1 www.sourceforge.net 
2 www.github.com 

existing analysis tools, developed for project level support 
typically do not scale to these new global software and 
development contexts. As a result, Information Security (IS) 
has emerged as a major challenge for the software domain and 
has become an integrated part of today’s software development 
processes [2]. Specialized advisory databases (e.g. National 
Vulnerability Database (NVD)3) have been introduced to 
provide central repositories for tracking software vulnerabilities 
and potential solutions to resolve them. However, while these 
databases are knowledge rich resources, they have often 
remained information silos, disconnected from other 
knowledge in the software development domain, such as code 
or issue tracker repositories.  

There exist several reasons for these information silos: 1.) 
A lack of standardized formalism for representing knowledge 
in the software engineering domain.. 2.) The inability to 
integrate seamlessly heterogeneous knowledge resources that 
would allow for both, establishing semantic links across 
existing knowledge and inferring new knowledge.. 3.) No 
uniform resource identifiers across knowledge resources that 
support fact and analysis results sharing for consumption by 
either humans or machines.  

Given the growing importance of IS for the software domain 
and the challenges the software community faces in integrating 
heterogeneous knowledge resources, this paper introduces a 
modeling approach that addresses this traceability challenge. 
More specifically, our approach takes advantage of the 
Semantic Web and its supporting technologies (e.g., ontologies, 
Linked Data, reasoning services) to establish a unified 
representation that supports knowledge integration across 
repository boundaries. In addition, using ontologies and Linked 
Data we can now enrich these repositories with explicit and 
implicit semantic links and take advantage of Semantic Web 
reasoning services, to create true information hubs. We 
introduce a Security Vulnerabilities Analysis Framework (SV-
AF), which not only establishes traceability links between 
security databases and software repositories, but also enables 
practitioners being notified about potential security 
vulnerabilities introduced due to the indirect dependencies 
within their systems.  

The remainder of this paper is organized as follows: Section 
II describes in more detail background relevant to our research. 

3 www.nvd.nist.gov 
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Section III describes details of our proposed SV-AF. Section IV 
explains the methodology used to instantiate the framework. 
Section V discusses our case study design and findings. Section 
VI provides a discussion of our findings and potential threats to 
the validity. Section VII compares our work with related work, 
followed by Section VIII, which concludes the paper and 
discusses future work. 

II. PRELIMINARIES 

A. Software Build Systems  
Build systems transform the source code of a software 

system into deliverables by managing required project 
dependencies and automating the build process. Build files are 
either stored in source code repositories together with a 
project’s source code (e.g. Ant build files) or in specialized 
build repositories, such as the Maven central repository4. The 
Maven repository is a large collection of Java artifacts to allow 
organizations to publish and make their software components 
available to developers. The Maven repository contains over 1 
million artifacts (e.g., JAR files, source code, Javadoc), with 
each artifact being uniquely identified by its groupId, artifactId 
and version number. As part of the Maven build process, a 
software project defines through xml configuration files (POM 
files), unidirectional project dependencies on other artifacts. 
Upon a project build, Maven dynamically downloads all 
dependent Java libraries and plug-ins from the Maven central 
repository into a local cache to be accessible during the project 
build. 

B. Security Vulnerability Databases 
In the software security domain, a software vulnerability 

refers to mistakes or facts about the security of software, 
networks, computers or servers that can create security risks 
and be used by hackers to gain access to system information or 
capabilities [3]. The discovery of new software vulnerability is 
often first reported in software repositories (e.g., issue trackers, 
mailing lists) of the affected projects or discussed on Q&A sites 
(e.g., StackOverflow5). A common characteristic of such early 
vulnerability reporting is that descriptions (information) of 
vulnerabilities are dispersed across multiple resources, but also 
the descriptions tend to be incomplete, inconsistent and 
ambiguous across resources. Advisory databases (e.g., NVD) 
were introduced to address some of these shortcomings. Their 
key objective is to provide a central resource for reporting 
vulnerabilities, but also to standardize the reporting of 
vulnerabilities. To facilitate this standardization process, a 
Common Vulnerabilities and Exposures (CVE) dataset has 
been introduced to create a publically available dictionary for 
vulnerabilities to allow for a more consistent and concise use of 
security terminology. Once a new vulnerability is revealed and 
verified by security experts, this new vulnerability and other 
relevant information (e.g., unique identifier, the source URL, 
affected resources and related vulnerabilities from the same 
family group) will be added to the CVE database.  

                                                           
4 http://search.maven.org 
5 http://www.stackoverflow.com 

In addition to the CVE entry, the vulnerability will also be 
classified in the Common Weakness Enumeration (CWE) 
database. The CWE provides a common language to describe 
software security weaknesses and classifies them based on their 
reported weaknesses. NVD, CVE, and CWE are all part of a 
global effort to manage the reporting and classification of 
software vulnerabilities.  

C. The Semantic Web 
The Semantic Web has been defined by Berners-Lee et al. 

as “an extension of the Web, in which information is given well-
defined meaning, better enabling computers and people to work 
in cooperation” [4]. It forms a Web from documents to data, 
where data should be accessed using the general Web 
architecture (e.g., URIs). Using this Semantic Web 
infrastructure allows data to be linked, just as documents (or 
portions of documents) are already, allowing data to be shared 
and reused across application, enterprise, and community 
boundaries. In a Semantic Web, data can be processed by 
computers as well as by humans, including inferring new 
relationships among pieces of data. For machines to understand 
and reason about knowledge, this knowledge needs to be 
represented in a well-defined, machine readable language. 
Ontologies provide a formal and explicit way to specify 
concepts and relationships in a domain of discourse. The 
Semantic Web uses the Resource Description Framework 
(RDF) as its data model to formalize the meta-data as subject-
predicate-object triples, which are stored in triple-stores. Triple-
stores are Database Management Systems (DBMS) for data 
modeled using RDF. Unlike Relational Database Management 
Systems (RDBMS), which store data in relations (or tables) and 
are queried using SQL, triple-stores store RDF triples and are 
queried using SPARQL [4]. The RDF data-model is domain 
independent and users define ontologies using an ontology 
definition language. The Web Ontology Language (OWL) [5] 
is an example of such a definition language and has been 
standardized by the W3C6. It supports the creation of machine 
understandable information to enable Web resources to be 
automatically processed and integrated. The sub-language, 
OWL-DL, is based on Description Logics (DLs)[6]. DL is a 
logic-based formalism using predicate calculus to define facts 
that can formally describe a domain. Therefore, DLs are a set 
of axioms called a TBox (e.g.������ � �	�
��) and set of 
facts called ABox (e.g. {Parent(John), hasChild(John, Mary)}). 
Both TBox and ABox form a knowledge Base (KB) and often 
written�� ��� ��� �. The RDF data-model forms a graph 
where nodes (subject, object) are connected through edges 
(predicates). The SPARQL query language [7] is used to 
retrieve information from RDF data-model graphs.  

III.  SECURITY VULNERABILITY ANALYSIS FRAMEWORK 

A. Knowledge Modeling 
One of the key premises of the Semantic Web is its ability 

to share and extend existing knowledge. Our knowledge 
modeling approach builds upon this premise, by reusing and 

6 https://www.w3.org/ 
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extending the software engineering ontologies introduced in 
[8]. More specifically, we extend these ontologies, by focusing 
not only the semantic integration of additional traditional 
software repositories (e.g., build management) and specialized 
repositories (e.g., vulnerability databases) but also an ontology 
design that goes beyond the conceptualization of a domain of 
discourse, by focusing on the inference of new knowledge. We 
followed a bottom-up modeling approach, where we model first 
system specific concepts and iteratively abstracted higher-level 
shared concepts in upper-ontologies (see Fig. 1). The resulting 
four layer modeling hierarchy is similar to a metadata modeling 
approach introduced by the Object Management Group 
(OMG)7. Each of these layers differ in terms of their purpose 
and their design rationale. To improve the readability, we 
denote OWL classes in italic, individuals are underlined and a 
dashed underline is used for properties. For a complete 
description of our ontologies, we refer the reader to [9].  

Domain Spanning Concepts 
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Fig. 1: The SV-AF Ontologies Abstraction Hierarchies

 
General Concept Layer - Classes in the top-layer model 

correspond to meta-meta level concepts - core concepts shared 
and extended by the lower modeling layers. Examples for such 
core concepts are: Product, Reference, Activity, Stakeholder, or 
Artifact. All concepts in this layer are subclasses of the 
SeonThing class (a subclass of owl:Thing, which captures the 
set of all individuals within our framework). Similarly the 
datatype properties and object properties in this layer are 
generic and shared across the abstraction layers. For example, 
the dependsOn object property captures the generic relationship 
between things - one Product dependsOn another Artifact.   

Domain-Spanning Concepts – In this layer, concepts 
describe knowledge that is typically inferred from two or more 
ontologies. For example the measurements ontology acts as a 
general linking mechanism between ontologies. The ontology 
provides two basic concepts, BaseMeasure or DerivedMeasure. 
Adequate BaseMeasure instances are the size and 
numberOfDependencies in a Product. DerivedMeasure 

                                                           

7 http://www.omg.org/ 

captures an aggregation of values from different subdomains. 
For example, the DerivedMeasure class includes the 
numberOfVulnerabilitiesPerApi instance, which is computed 
from measures collected from the source code, history, build 
system and the vulnerability ontologies. SimilarityMeasure, 
which is a subclass of DerivedMeasure, captures the similarity 
([0,1]) between any two SeonThing instances.  

Domain-Specific Concepts - The third layer in our 
knowledge model captures domain specific aspects; concepts 
that are common and reused across resources in a particular 
domain (e.g., domain of issue trackers). At the core of the 
domain specific layer we have several domain ontologies: (1) 
Software sEcurity Vulnerability ONTologies (SEVONT), (2) 
Software Evolution ONtologies (SEON) [8] and (3) Software 
Build Systems ONtologies (SBSON). For example, security 
databases are capturing a Vulnerability that has an associated 
Event. An event often can be further divided into Action and 
Impact - an attacker exploits a Vulnerability to produce an 
Action, which has an Impact.  

System-Specific concepts - The bottom layer defines 
systems-specific concepts by extending the domain specific 
concepts to capture knowledge specific to a particular 
knowledge resource. For example, the system specific ontology 
for NVD extends the general SEVONT ontology with NVD 
specific information on the severity of vulnerabilities by adding 
a Severity concept.  

B. Knowledge Engineering and Result Integration 
The Semantic Web is characterized by decentralization, 

heterogeneity, and lack of central control or authority. These 
new features have greatly contributed to the success of the 
Semantic Web but at the same time, also introduced several new 
challenges.   

Knowledge Base engineering: In contrast to the top-down 
approach often used by knowledge engineers, we follow a data-
driven, bottom-up approach (Fig. 2).  
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Fig. 2: Knowledge engineering process to support result integration

 
When modeling a new knowledge resource or integrating 

new analysis results, during the interception phase, we first 
conceptualize the domain of discourse, by identifying its major 
concepts and relations. Before adding a concept to the 
knowledge base, we verify that a similar concept has not yet 
previously modeled in any of the upper SV-AF’s layers, e.g., 
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the domain-specific layer, and re-use the existing concepts 
whenever possible. If no similar concept exist, we temporarily 
add the concept to its system-specific ontology, before 
considering consolidating it with other existing concepts. This 
consolidation process usually is postponed until we reach a 
sufficient understanding of the problem domain.  

For example, given are two similar concepts found in 
different security vulnerability databases, we will first create 
two distinct system-specific concepts in both ontologies. Then 
we compare the results and move if commonalities are 
identified the two concepts to the domain-specific layer. 
Concepts modeled in more than one domain are promoted from 
the domain-specific to the domain-spanning layer. 

Result integration: Our approach applies different types of 
analysis and combines different knowledge resources, it is not 
realistic to expect that all sources share a single, consistent view 
at all times. In particular, if one considers result integration, 
where different resources or analysis approaches might 
generate results, which are in a possible disagreement. The 
knowledge engineering community has proposed different 
approaches to manage such possibly conflicting information 
sources. For example in [10], an approach is presented that 
models this disagreement by structuring knowledge into 
viewpoints and topics. Using this approach Viewpoints 
represent a particular point of view (e.g., information stemming 
from a particular tool or knowledge resource), whereas topics 
capture knowledge that is relevant to a given subject (e.g., 
vulnerable artifact). These environments are nested within each 
other: viewpoints can contain either other viewpoints or topics. 
Using this nested modeling approach, a topic can now contain 
knowledge pertaining to its subject, but also other viewpoints, 
e.g., when the subject is another user [10]. These viewpoints 
create spaces within which to do reasoning: consistency can be 
maintained within a topic or a viewpoint, but at the same time, 
conflicting information about the same topic can be stored in 
another viewpoint without having to decide on a “correct” set 
of information, thereby losing information prematurely.   

C. An Example Scenario: Modeling global vulnerability 
impacts using bi-directional dependencies  

Currently, there are a number of build systems which 
provide users with support for managing both internal 
components and external API dependencies.  

D
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G

 Target project

 Dependency coverage 
(Traditional build)

 Extra Dependency 
coverage (SV-AF)

uni-directional 
dependsOn link

Inferred Transitive 
dependency link

LEGEND

Fig. 3: Unidirectional vs. bi-directional dependencies 
 
However, while such a unidirectional dependency model 

works well for managing build dependencies, it restricts a 
user’s ability to further reason upon this knowledge. For 

example, using Maven, it is currently not possible for a user to 
identify all components or projects that depend either directly 
or indirectly on a specific project (see Fig. 3).To overcome this 
challenge, we take advantage of the Semantic Web and its 
standardized knowledge modeling approach, by introducing 
our SBSON ontology to capture the dependencies in the Maven 
repository. 

Using SBSON we are now able to create a global bi-
directional project dependency graph, which supports extra 
semantic analysis by taking advantage of semantic reasoning 
services. For example, in Fig. 3, using SBSON we can extend 
the Maven supported impact analysis on project C, by not only 
identify all components on which project C depends on 
(projects D and E), but also all projects which might depend on 
project C (projects A, F and G). 

As discussed before, our SV-AF knowledge modeling 
approach allow analysis approaches to take advantage of the bi-
directional dependencies in our knowledge model. In what 
follows, we not only illustrate how the Maven repository can be 
seamlessly integrated with NVD by modelling relevant 
concepts and their relations across the different abstraction 
layers in our knowledge modeling approach. We provide a 
concrete usage scenario, how our unified representation can 
support now for example impact analysis of known 
vulnerabilities across heterogeneous software repositories 
(NVD and Maven).  The OWL classes and object properties 
used for the impact analysis example are shown in Fig. 4 (data 
properties have been omitted to improve readability of the 
figure).   
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Fig. 4: SV-EF’s ontologies and concepts involved in software 

vulnerability dependencies analysis 
 
Modeling Vulnerable Release dependences: A 

VulnerableRelease is a software Release within the NVD 
database with a known Vulnerability. A BuildRelease is a 
software release within the Maven ecosystem. Using our 
ontology alignment process, we infer that a given 
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VulnerableRelease is sameAs a specific BuildRelease–. As 
such, the VulnerableRelease inherits the properties of the 
original BuildRelease, for example, the VulnerableRelease now 
dependsOn other BuildRelease. Given the support for bi-
directional links in our model, a Project hosted in an 
ecosystem’s Repository can now be identified as being 
potentially affected by a vulnerability when it directly or 
indirectly reuses a VulnerableRelease. 

IV. METHODOLOGY 

A. Overview  
In what follows we introduce in more details our overall 

methodology (Fig. 5) which consists of three major steps: (i) 
Fact extraction and population, (ii) ontology alignment and (iii) 
tracing vulnerabilities across knowledge boundaries using 
knowledge inferencing/reasoning. 
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Fig. 5: SV-AF system overview 

B. Facts Extraction and Population 
Our SV-AF framework depends on several endogenous and 

exogenous data sources. Endogenous data sources are internal 
to a software development environment such as source code, 
issues trackers and build repositories. In contrast, exogenous 
data sources are external to a software development 
environment, such as vulnerability databases, Q&A sites.   

The fact extraction process itself consists of extracting facts 
from the Maven POM files and the NVD XML update feeds 
(see Fig. 5 –B). For the ontology population, we use the Jena8 
framework to populate the corresponding artifact ontologies 
and materialize them using a triples-tore.  
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Fig. 6: Instances matching approach 

C. Ontology Instances Aligment  
For the alignment of instance in our ontologies, we take 

advantage of the Probabilistic Soft Logic (PSL) framework 

                                                           
8 jena.apache.org 

9 http://franz.com/agraph/support/learning/Overview-of-RDFS++.lhtml 

[11], which establishes weighted links between ontologies (Fig. 
6).  

PSL uses continuous variables to represent truth values, 
relaxing the standard Boolean values [11] traditionally used. 
The resulting probability distribution over literals is captured in 
a graph model, which can then be reasoned upon. The majority 
of the rules in PSL are soft-weighted rules, like rules stating that 
instances are similar if their names or their classes are similar 
(see Listing 1).  
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Listing 1: PSL rules 
 

For example, in Listing 1.1 the first PSL rule states that two 
instances A, B with similar names defined in different source 
ontologies are likely to be similar. “similarID” is a similarity 
function implemented using the Levenshtein similarity metric. 
Rules in PSL are labeled with non-negative weights. In Listing 
1.2, the rule weights is used to indicate that projects with same 
names and versions are more likely to be similar than projects 
with same names only (Listing 1.1).  

 
Using PSL we can establish owl:sameAs relations between 

similar instances found in the SEVONT and SBSON 
ontologies. In this example, two ontologies NVD and Maven are 
given as data sources and their corresponding instances NOP�N 
and�NQ<D	�N. The number of possible instance pairs for these 
two ontologies is NOP�N R NQ<D	�N. In our example, similarity 
among instance pairs is determined based on the extracted 
literal information such as name, version and vendor. We used 
the PSL framework classifier to compute the similarity weights 
for the owl:sameAs links. For training purpose, we created a 
training dataset with manually labeled instance links to train the 
PSL classifier to establish the weights for the pre-defined rules. 
Having derived the semantic similarity weights for each 
instance pair, we can now assigned these weights to the 
owl:sameAs (see Fig. 7) links between the aligned instances 
and then materialized the alignment results to our knowledge 
base. Having the weighted alignment links between the two 
ontologies, a SPARQL query can now be written, to retrieve the 
vulnerability information from the NVD ontology and their 
corresponding instances in Maven ontology based on a given 
similarity threshold. For this query, we take advantage of 
RDFS++9 reasoning to not only retrieve explicit but also infer 
implicit facts from the knowledge base. More specifically, our 
ontology design not only supports transitive but also 
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subsumption reasoning, which are not supported by traditional 
relational databases. 
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Fig. 7: weighted similarity modeling 

D. Knowledge Inferencing and Reasoning 
A key feature of many triples-stores is to provide scalability 

reasoning, by materializing reasoning results. In this section, we 
discuss how such reasoning capabilities are used in our 
approach to trace vulnerabilities across knowledge boundaries. 

owl:sameAs inference: A commonly used predicate for 
inferring new knowledge is owl:sameAs, which is used to align 
two concepts. An example from our SBSON and SEVONT 
ontologies is shown in Fig. 8. 
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Fig. 8: owl:sameAs rules example 
 

Given is the following SPARQL query (Listing 2), which takes 
advantage of the owl:sameAs predicate if inference is enabled: 

 

 
Listing 2: SPARQL query returning same as projects vulnerabilities 

 
Without inferencing, the query result set would be empty, since 
no triple has as subject sbson:ProjB and predicate 
sevont:hasVulnerability. However, with inference enabled, it 
can now be infer that ProjB has a vulnerability (CVE-ID10) 
through the reasoner being able to establish a link between 
sbson:ProjB and sevont:ProjA using the owl:sameAs property. 

owl:TransitiveProperty inference: A relation R is said to 
be transitive if R(a,b) and R(b,c) implies R(a,c); this can be 
expressed in OWL through the owl:TransitiveProperty 
construct. We define seon:dependsOn  to be a bi-directional 
transitive property of type owl:TransitiveProperty (e.g., �
seon:dependsOn rdf:type owl:TransitiveProperty). Through 
this transitive construct, we are now able to retrieve a list of all 
projects that have a direct and transitive dependency on the 
vulnerable library, and vice versa (see Listing 3). 

 
                                                           

10 Every CVE-ID is uniquely identified by the letters ’CVE’, and eight digits. 
For example, CVE-2015-0235. 
11 https://ws.apache.org/wss4j/ 
12 https://hc.apache.org/httpcomponents-client-ga/ 

 
Listing 3: SPARQL query returning transitive vulnerable dependencies 

V. CASE STUDY 
This section introduces the two case studies we use to 

evaluate the applicability of our knowledge modeling approach. 
More specifically, in case study #1, we identify semantically 
similar software projects that exist in Maven and contain known 
security vulnerabilities disclosed in the NVD database. The 
objective of this case study is to evaluate the applicability of our 
alignment process by comparing it against a specialized, 
existing dependency analysis tool [12]. For the second case 
study, we illustrate how semantic reasoning can enable 
semantic richer analysis services. More specifically, we show 
that our semantic rules can infer explicit and implicit security 
vulnerabilities by inferring transitive dependencies by 
traversing the bi-directional links.     

A. Case Study Data 
For the data collection and extraction in our case studies, we 

rely on two data sources: the NVD database and the Maven 
build repository. We download the latest version of the 
repository from the Maven.org website (Table I) and download 
all NVD vulnerability xml feeds from 1990 and 2016 (Table II). 
For case study #1, the number of releases and unique vulnerable 
products were used to evaluate our alignment approach, for 
integrating these two ontologies. 

 
Table I: Maven Repository statistics 

Repository Projects Releases Last Update 
Maven [13] 130,895 1,219,731 2016-01-28 16:34:07 UTC 

 
Table II: NVD database statistics 

Repository # unique 
vulnerabilities 

# unique vulnerable 
products Period  

NVD [14] 74945 109212 1990 - 2016 

 
For our case study #2, the objective was to identify the 

potential transitive impact set of some vulnerable components 
on other systems. For the study, we selected five Apache 
projects (Table III) hosted in the Maven repository. The main 
criteria for selecting these projects was that at least some of 
their releases contain known vulnerabilities (identified in our 
case study#1) and the functionalities these products provide are 
widely reused by other projects. These five subjects vary in size 
(classes and methods) and application domain. Wss4J11 is a Java 
implementation of the primary security standards for Web 
Services, Httpclient12 is responsible of provides reusable 
components for client-side authentication, HTTP state 
management, and HTTP connection management. Apache 
Derby13 is an open source relational database implemented 

13 https://db.apache.org/derby/ 
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entirely in Java, Hibernate Validator14 allows expressing and 
validating application constraints using annotation-based 
constraints, and Apache OpenJPA15 is a Java persistence 
project that can be used as a stand-alone plain old Java object 
(POJO) persistence layer or be integrated into any Java EE 
compliant container. 
 

Table III: Subject systems and sizes for transitive dependencies analysis 

B. Case Study Results 
Case Study 1: Identifying open source components that are 

directly susceptible to known security vulnerabilities 
 
Objective: The goal of this study is to evaluate the 

performance of our semantic similarity linking approach used 
to align two domain specific ontologies. 

Approach: In order to align (link) these two ontologies 
(SEVONT and SBSON), we use the PSL framework to align 
project specific information found in both ontologies. We 
trained PSL using a corpus of 524 randomly selected project 
instance pairs for which manually created links. We then 
executed our PSL alignment rules on this training dataset to 
train our approach. As a result from this training, two concept 
instances in these ontologies can now be aligned with a degree 
of certainty, if A and B, with same names are defined in 
different ontologies (cd<>	d�C��	) and have similar Vendors 
and same Version numbers. SameName, SimilarVendor, and 
SameVersion are a similarity functions implemented using a 
Levenshtein distance metric. In this example, the 
SameProject(A,B)�is given a weight of 0.9 (Listing 4), which is 
based on result from the PSL training set. Fig. 9 shows the PSL 
inference results for our training dataset, with the weights for 
the d<>	���S	���:� =!�alignment ranging from a minimum of 
0.04 to a maximum of 0.42. 

Using the semantic rule (Listing 4), PSL can now perform 
maximum a posteriori (MPE) reasoning [11] to infer the most 
likely values for a set of propositions and observed values for 
the remaining (evidence) propositions.  

 
e+,( ���� e��! " e+,( ��#� e�#!

" ce�$�e+,( ��e��� e�#!

" f�$���� %�! " f�$��#� &�!

" e�$�f�$��%�� &�!

" g��h+(��� %i! " g��h+(�#� &i!

" e�$�'�(g��h+(�%i� &i!

" g�(��+���� %j! " g�(��+��#� &j!

" e�$�g�(��+��%j� &j!

. e�$�k(+l� ���� #!�/a01234 5� m

 

Listing 4: SameProject Rules 
For a full discussion on MPE reasoning, we refer the reader 

to [11]. The results of the PSL inference is a set of : R = 
                                                           

14 http://hibernate.org/validator/ 
15 http://openjpa.apache.org/ 

SameProject weights that range from [0..1], with 0 two concept 
instances having no similarity and 1 corresponding to 100% 
similarity among instances.  

 

 
Fig. 9: Probabiltisitc PSL similarities results 

 
As part of our knowledge modeling approach, we 

materialized the inferred semantic instance links (owl:sameAs) 
between the SEVONT and SBSON ontology, making this 
inferred knowledge a persistent part of our knowledge model. 
We add weights for each link, based on the inferred similarity 
values using the domain spanning similarity measure 
(SimilarityMeasure) class in our model (Section III-A). 

Findings. Our study showed that 0.062% of all Maven 
projects contain known security vulnerabilities that have been 
reported in the NVD database. An example for such a 
vulnerability is shown in Table IV. 

 
Table IV: Example of linked vulnerability 

SEVONT fact SBSON fact Corresponding 
Vulnerability 

Sevont-
securityDB.owl#sonatyp

e:nexus:2.3.1 

Sbson-
build.owl#org.sonatype.n

exus:nexus:2.3.1 

Sevont-
securityDB.owl#CVE-

2014-0792 
 

Further analysis of our results showed that projects might 
often suffer from multiple vulnerabilities. We found also that 
48.8% of the 750 identified vulnerable project releases suffer 
from multiple security vulnerabilities, with PostgreSQL 7.4.1 
being the most vulnerable project in the repository, containing 
25 known vulnerabilities. Giving this additional insight can 
guide system update decisions and help avoiding the reuse of 
APIs/components with known security vulnerabilities or 
components that might be prone to these type of vulnerabilities.  

For example, in December 2010, Google released its Nexus 
S smartphone16. The phone was originally running on Android 
2.3.3 – an Android version that already contained the security 
vulnerability discussed in Table V. While the Nexus S received 
regular Android OS updates up to Android Version 4.2, an 
actual fix of the reported vulnerability (CVE-2013-4787) was 
only introduced with Android 4.2.2. However, this new 
Android version is not supported and distributed for the Nexus 
S, leaving existing users of the phone susceptible to attacks. Our 
analysis also showed that the same vulnerability can affect 
multiple releases of a product. For example, security 
vulnerability CVE-2013-478717 has been reported for five 

16 https://en.wikipedia.org/wiki/Nexus_S 
17 https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4787 

ID Subject Systems Version Size 
Classes Methods 

P1 Wss4j  1.6.16 167 1610
P2 Httpclient  4.1 209 1180 
P3 Derby  10.1.1.0 967 16354 
P4 Hibernate-validator  4.1.0.Final 325 2642 
P5 Openjpa 1.1.0 1201 18640 
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different Android versions (Table V). For product maintainers 
this information can help in to ensure consistent patching and 
regression testing across product lines or different versions of a 
product. 

Table V: Critical Vulnerabilities for Android Project 

 
Evaluation: We evaluate the linking accuracy when 

aligning project instances (owl:sameAs) between our Maven 
and NVD ontologies.  

During the first step of our evaluation, we compared the 
impact of the similarity weight thresholds (G � L�n� G � L�7�

G � L�o��and�G � L�p) in terms of precision, recall and F1 
measure on the inferred links created by the PSL alignment 
process. Precision is calculated, with true positives being the 
number of project instance pairs correctly classified as similar, 
while false positives corresponds to the number of non-similar 
instance pairs that are incorrectly classified as same projects. 
For Recall, false negatives corresponds to the number of non-
similar instance pairs that are incorrectly classified as being 
similar projects. The F1-score is the harmonic mean of 
precision and recall, giving equal weight to both measures.  

Our analysis (Table VI) showed that an increase in the 
similarity threshold from 0.1 (low similarity) to 0.4 ((higher 
similarity) had limited effect on the precision (decrease from 
0.98 to 0.75), recall was significantly lower (down from 0.68 to 
0.01).  

Table VI: owl:sameAs link (w) evaluation 
 Precision 

Data Size  w=0.0 w=0.1 w=0.2 w=0.3 w=0.4 

500 

0.77 0.88 0.98 0.93 0.75 
Recall 

0.77 0.68 0.30 0.03 0.01 
F1-score 

0.77 0.77 0.46 0.05 0.01 
A manual inspection of the inferred links showed that the 

low recall for the higher threshold values is due to the 
inconsistent capturing of vendor information within the two 
ontologies. NVD relies on the common name to identify a 
vendor, whereas Maven uses the fully qualified package name 
as the vendor name. For example, using a w=0.0, 
org.apache.cxf:cxf:3.0.1,org.apache.geronim.configs:cxf:3.0.1 
and  org.apache.geronimo.plugins:cxf:3.0.1 in SBSON will be 
considered the same instance as apache:cxf:3.0.1 in SEVONT 
and therefore correctly linked. However, using a higher 
similarity threshold, these instances will no longer be linked. 
We use the similarity weight of�G � L�n in all subsequent 
experiments due to its high F1-score. 

 
We further evaluated the link quality by comparing our 

approach against the OWASP Dependency-Check tool [12], a 

specialized tool, which identifies direct dependencies between 
projects and publicly disclosed vulnerabilities. For the study, 
we apply the OWASP dependency check tool on our gold 
standard (see Section IV.B) and compare the detected 
dependencies against the links generated by our approach 
(Table VII). The low OWASP recall is because OWASP 
requires JAR files to be available to be able to map the files to 
the vulnerabilities. However, not all projects hosted in Maven 
are distributed with their JAR files.  
 
Table VII: SV-AF vs. OWASP Dependency Check tool accuracy evaluation 

Data Size SV-AF w=0.1 OWASP 
Precision Recall F1-score Precision Recall F1-score 

500 0.88 0.68 0.77 0.81 0.26 0.40 
 

Case Study 2: Identifying open source components that are 
directly and indirectly dependent on vulnerable components. 

Objective: In this study we evaluate how our framework can 
support the analysis of potential security vulnerability impacts 
on dependent software components. Furthermore, the case 
study illustrates the flexibility of our knowledge modeling 
approach and highlight how additional knowledge resources 
can be seamlessly integrated and reasoned upon.  

Approach: For this case study, we extend our analysis to 
include transitive closure dependencies (Fig. 10) that not only 
identifies components that are directly but also indirectly 
affected by known vulnerabilities. For this impact analysis, we 
selected 5 open source Java projects (Table III) with known 
security vulnerabilities for which we do not distinguish if a 
component actually makes use (calls) a vulnerable component 
or not.  

Project #1 Project #2 Project #3 Project #ndependsOn dependsOn

Level #1 Level #2

dependsOn

Level #n

Inferred relation Declared relation

dependsOn

 
Fig. 10: Inferred project dependencies in SBSON 

Findings: In what follows, we summarize the findings from 
our case study. We report on our transitive dependency 
analysis, which highlights also the benefits of our knowledge 
modeling approach, the ability to integrate knowledge 
resources while taking advantage of inference services provided 
by the Semantic Web. Given the bi-directional links we 
established between the NVD and the Maven repository, our 
analysis is no longer limited to identify whether a project 
depends on a vulnerable component. Instead, given a vulnerable 
component, we can now also provide a more holistic analysis, 
by identifying for a global context, which other projects 
potentially directly or indirectly depend on this vulnerable 
component. 

Table VIII provides a summary of our analysis. In order to 
keep the results simple and readable, we consider only three 
levels of transitivity. For example, the vulnerable project 
Hibernate-validator 4.1.0 (P4) has a potential impact set of  
3805 direct dependent projects (level 1) and 128109 dependent 
projects when we consider an additional two levels of 
transitivity (level 3). 

Android Version CVE-IDs # of direct 
dependencies 

SBSON#com.google.android
:android:2.2.1 

CVE-2013-
4787 360 

SBONS#com.google.android
:android:2.3.1 

CVE-2013-
4787 176 

SBSON#com.google.android
:android:2.3.3 

CVE-2013-
4787 351 

SBSON#com.google.android
:android:3.0 

CVE-2013-
4787 34 

SBSON#com.google.android
:android:4.2 

CVE-2013-
4787 1 
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Table VIII: Transitive dependencies on vulnerable components 

ID Component 
Name 

# 
Vulner-
abilities 

CVE-IDs 

Number of dependent 
components based on 
transitivity level (L) 

L1              L2              L3 

P1 Wss4j 
1.6.16 2 CVE-2015-0227  

CVE-2014-3623 336 639 73 

P2 Httpclient 4.1 2 CVE-2011-1498 
CVE-2014-3577 685 4961 41326 

P3 Derby 
10.1.1.0 3 

CVE-2005-4849 
 CVE-2006-7216 
CVE-2006-7217 

385 37999 66147 

P4 
Hibernate-
validator 

4.1.0.Final 
1 CVE-2014-3558 3805 39295 128109 

P5 Openjpa 1.1.0 1 CVE-2013-1768 74 49460 141303 

 
Fig. 11 illustrates a typical usage scenario for modeling 

approach. While the Geronimo-jetty6-javaee5 (version 2.1.1) 
itself has no known vulnerability reported, the project depends 
on several components (level 1 dependencies) with known 
security issues (5 Java projects with a total of 15 known security 
vulnerabilities), making also Geronimo-jetty6-javaee5 
potentially a very vulnerable component. 

Dojo 
(version 1.0.2)

CVE-2010-
2276

affects

uses

CVE-2010-
2274

CVE-2010-
2275

CVE-2010-
2273

affectsaffects

affects

Openjpa 
(versions 1.0.2 & 

2.1.1) 

CVE-2013-
1768affects

uses

Myfaces 
(version 2.1.1)

CVE-2011-
4367

affectsuses

Cxf 
(version 2.1.1)

CVE-2011-
4367affectsuses

Jetty
 (version 6.1.7)

CVE-2009-
4612

CVE-2009-
1524

CVE-2009-
1523

CVE-2009-
4461

CVE-2009-
4610

CVE-2009-
4609

CVE-2009-
4611

affects

affects

affects

affects

affects

affects

affects

uses

Geronimo-jetty6-javaee5 
(version 2.1.1)

Medium SeverityHigh Severity External APIs

 
Fig.11: Geronimo-jetty6-javaee5 uses 5 projects (external APIs) from level 1 

dependency and each project suffer from security vulnerabilities 

VI. DISCUSSION AND THREATS TO VALIDITY 
As our experiments illustrate, a unified and formal 

knowledge modeling approach can indeed help eliminating 
existing information silos, by seamlessly linking and 
integrating knowledge resources. For the linking, we take 
advantage of a probabilistic semantic similarity measure to link 
instances in our ontologies (e.g., projects in SEVONT and 
SBSON). Moreover, unlike traditional mining software 
repositories techniques, our approach allows for analysis results 
and inferred knowledge to become part of the knowledge base 
and allow for their later consumption (processing) by either 
human or machines. In addition, rather than relying on 
proprietary analysis solutions, our modeling approach takes 
advantage of the Semantic Web technology stack, including 
standardized knowledge representation and inference services. 

A. Case Study 1  
Identifying known security vulnerabilities in software 

projects has been widely discussed in the literature [3], [15]–
[17]. However, our approach differs from these existing works 

in that 1.) It unifies two heterogeneous knowledge resources 
(software security repositories and build system repositories), 
using a standardized knowledge representation. 2.) It supports 
semantic relationships (e.g., owl:sameAs) and RDFS++ 
reasoning to infer new knowledge (e.g., identify vulnerable 
transitive dependencies), which are not explicitly found in any 
of these resources. 3.) Given the bi-directional links, our 
analysis can go beyond traditional inter project dependencies 
and include intra project dependencies. The result from our case 
study shows that the problem of depending on vulnerable third 
party components with known security vulnerabilities is a 
common and widespread problem [16]. 

B. Case Study 2 
The case study illustrates that vulnerabilities can no longer 

be treated in a project specific context. With the globalization 
of the software industry, promoting sharing and integrating of 
knowledge across knowledge borders, vulnerabilities might 
have a wide spread impact on the software ecosystem. In our 
second experiment, the use of transitive properties and 
reasoning capabilities allow to transform a typical proprietary 
analysis implementation into a simple, customizable 
(SPARQL) query approach, which offloads much of the 
processing to the semantic reasoners. For example, the query in 
Listing 3, will not only return all projects that are directly but 
also indirectly depending on a vulnerable component.  

C. Threats to validity 
Internal Validity: An internal validity threat to our 

approach is that our experiments rely on the ability to mine facts 
from the Maven and NVD repositories to populate our 
ontologies. A common problem with mining software 
repository is that repositories often contain noise in their data 
due to ambiguity, inconsistency or incompleteness. This threat 
can be mitigated in our research context, since vulnerabilities 
published in NVD are manually validated and managed by 
security experts and therefore making this data less prone to 
noise. Similarly, the Maven repository captures dependencies 
related to a particular build file, while ensuring that the 
dependencies are fully specified and available, eliminating not 
only ambiguities and inconsistency at the project build but also 
for the complete dataset. Another internal validity threat is that 
the instance pair matches for our training set was manually 
created and potential be prone to human errors. In order to 
mitigate this, we conducted a cross validation of the annotation, 
where the links were evaluated by another person. Finally, the 
size of the dataset used to evaluate our approach might not be 
considered large enough. To mitigate this threat, we evaluated 
our approach on dataset sizes to study the effect of the dataset 
size on our results. Table IX shows a standard deviation of 0.04 
and 0.09 for the precision and recall respectively. With the 
exception of the smallest evaluation size (50 instance pairs), our 
precision and recall for the various evaluation sizes are very 
close to the mean, indicating that increasing the dataset size, 
will most likely have no aversive effect on our results. 
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Table IX: Dataset size evaluation 
Data 

Points 
SV-AF (w=0.1) 

Precision |Distance from �| Recall |Distance from �| 
50 0.76 0.11 0.38 0.26 
100 0.87 0.00 0.62 0.02 
150 0.88 0.01 0.69 0.05 
200 0.9 0.03 0.69 0.05 
250 0.89 0.02 0.68 0.04 
300 0.86 0.01 0.63 0.01 
350 0.87 0.00 0.66 0.02 
400 0.87 0.00 0.68 0.04 
450 0.88 0.01 0.67 0.03 
500 0.88 0.01 0.68 0.04 

Avg: 0.87 - 0.64 - 
SD (�) 0.04 - 0.09 - 

 
External Validity: In terms of external threats to validity, 

the presented experiments might not be generalizable for non-
MAVEN projects. This threat can be partially mitigated through 
our modeling approach. Given that our modeling approach is 
based on different levels of abstraction, we also consider and 
abstract common aspects of the domain of build repositories in 
our knowledge model. We do model the domain of build 
repositories as a domain of discourse in the domain-specific 
layer of our knowledge model. Another external threat to 
validity for our research is that our evaluation has mainly 
focused on a quantitative analysis of the results from the case 
studies, limiting our ability to generalize the applicability and 
validity of the approach. In order to mitigate this threat, an 
additional qualitative analysis has to be performed in the form 
of user studies, which will allow for an evaluation of both, the 
applicability of the approach and the analysis of the result sets 
from an expert user perspective. 

VII. RELATED WORK 
Software Interrelationship Artifacts across 

Heterogeneous Ecosystems: In a recent study, Ilo et al. [18] 
present their Software Relationship Ontology (SWREL) to 
model information about software interrelationships across 
different ecosystems. However, their ontology design focuses 
on the conceptualization rather than the inference of new 
knowledge. In addition, the semantic linking in SWREL is 
based on the dependencies relations existing in the Maven 
repository and Debian18 package repository. In contrast, our 
approach has more abstracted and generalizable features which 
can capture knowledge of different build-systems and package 
management repositories.   

 
Tracking Security Vulnerabilities: A number of static 

analysis tools exist (e.g.,[19]) that identify vulnerabilities in the 
source code. However, their objectives differs from ours, since 
their focus is on identifying and tracking security vulnerabilities 
only for a given project. This is in contrast to our approach, 
which also allows for a global dependency analysis of 
vulnerabilities using different sources of information. 
Mitropoulos et al. [20] and Saini et al. [21] used in their 
approach a static analysis tool (e.g., FindBugs [22]), to locate 
major security defects in Java source codes. They used the 

                                                           
18 https://www.debian.org/distrib/packages 

collected information to then further study the evolution of 
security-related bugs in a given project [23].  

Mircea et al. [15] introduce their Vulnerability Alert Service 
(VAS) tool to notify users if a vulnerability is reported for a 
software systems. VAS depends on the OWASP Dependency-
Check tool, which we compare with our SV-AF approach in 
Section V. VAS reports the vulnerable projects identified by the 
OWASP tool without further investigation; and just like 
OWASP, VAS does not support transitive dependencies 
analysis of vulnerable components. 

VIII. CONCLUSION AND FUTURE WORK 
In this paper, we introduce a Security Vulnerabilities 
Evaluation Framework (SV-EF), which introduces a unified 
ontological representation to establish bi-directional 
traceability links between security vulnerabilities databases and 
traditional software repositories. This framework not only 
eliminates some of the traditional information silos in which 
data resources have been resided, but also enables different 
types of dependency analysis. More specifically, our 
framework currently supports the linking of vulnerabilities 
reported by NVD to projects captured by the Maven build 
repository. Given the expressiveness of our ontological 
knowledge representation, we can now take advantage of 
semantic inference services to determine both direct and 
transitive dependencies between reported vulnerabilities and 
potentially affected Maven projects. Through two experiments, 
we showed the applicability of our framework, highlighting the 
potential impact of reusing vulnerable components in a global 
software ecosystem context.  

As part of our future work, we plan to investigate potential 
vulnerability patterns based on the usage of vulnerable 
components. These patterns will provide us with additional 
insights in assessing and predicting the quality of software 
systems.  
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